EMG-Elektroden-Impedanztester

Im Laufe von vielen Jahren sind einige Elektronik-Minikurse entstanden, welche sich auch mit der Elektromyographie (EMG) befassen und es gibt solche, welche EMG zum Hauptthema haben. Etwas speziell ist das intramuskuläre Messen elektromyographischer Signale (iEMG).

Gerade hier ist es wünschenswert, nach dem Implantieren von sehr dünnen Drahtelektroden, zu messen, ob die Elektroden Kontakt haben mit dem Muskelgewebe oder ob ein Unterbruch oder ein Kurzschluss besteht. Wenn Kontakt vorhanden, ist es sinnvoll etwas über den elektrischen Widerstand zwischen den beiden Elektroden im Muskelgewebe zu erfahren. Diese Ohmwerte sind stets ungenau. Es geht dabei um Richt- bzw. Erfahrungswerte. Deshalb die Grobanzeige mittels LED-Balkenanzeige. Die „graue“ LED im Titelbild bedeutet reduzierte Leuchtstärke und ein Widerstandswert von etwa 200 k-Ohm. Für intramuskuläres Messen ein realistischer Wert. Wenn mehr als etwa 2.5 M-Ohm oder bei offenem Kontakt, leuchten alle LEDs.

Mit der Eingabe von ELEKTRONIK und ELEKTROMYOGRAPHIE  in Google, findet man auf der ersten Seite zwei ELKO-Links (emg1.htm, emg_pps.htm) zu dieser Thematik mit zusätzlichen Informationen, zum Teil in weiteren Links.

Gruss Euer
ELKO-Thomas


UPDATE: Spannungsregelschaltung mit elektronischer Brummsiebung

Der Text wurde vollständig überarbeitet und verbessert mit einer Ergänzung für den Einsatz in elektromedizinischen Anwendungen. Dabei steht, auf Grund von meinen eigenen Erfahrungen, stets die Elektro-Myographie (EMG) im Fokus. Ursprünglich diente die praktische Schaltung (Bild 5) im Einsatz für einen speziellen Audiometriemessplatz.

In Zusammenhang mit hoch empfindlichen EMG-Messungen, wird die Alternative thematisiert, wie gut eignet sich anstelle eines relativ schwer gewichtigen Netzteiles mit einem Ringkerntrafo, ein moderner Schaltregler, konzipiert für die medizinische Anwendung, mit den selben Ausgangsleistungen. Die Verlustleistung ist, wie zu erwarten, minimal, die Isolationsspannung perfekt der Norm entsprechend und ebenso der sehr niedrige Erdableitstrom. Bedenklich sind jedoch die Störspannungen bis zu 100 mV, teils auch mehr, bei einer Frequenzbandbreite von z.B. 20 MHz. Wegen den oft komplexen parasitären Effekten (u.a. Streueffekte) ist die Entstörung oft nur mangelhaft realisierbar und bleibt unbefriedigt.

Geht es um Netzteile, gibt es manchmal auch Probleme mit Störungen wegen dem Gleichrichter. Neu thematisiert ist die Tatsache, dass auch Gleichrichter-Dioden im Einsatz mittel- bis hochfrequent stören. Thematisiert wie bisher, jedoch etwas differenzierter, ist das Störverhalten vom digitalen zum benachbarten analogen Teil innerhalb einer signalverarbeitenden Schaltung.

Gruss Euer
ELKO-Thomas

 


Stromspiegel-Schaltungen

Es gibt drei Elektronik-Minikurse zum Thema Konstantstromquelle. Thematisiert sind u.a. Schaltungen mit Transistor und LED. Dies eignet sich für viele Anwendungen. Die LED als Referenzspannung, weil sie den selben negativen Temperatur-Koeffizienten aufweist wie die der Basis-Emitter-Spannung eines Silizium-Transistors (BJT) von -2mV/K. Mit LED und Transistor gibt es auch die Methode des Konstantstromzweipol, ähnlich wie man dies mit JFET und Widerstand, in einfachster Form, kennt.

Eine besonders stabile konstante Stromquelle besteht aus Bandgap-Referenz, Operationsverstärker und Transistor. Ersetzt man die eingangsseitige Bandgap-Referenz durch einen Widerstand und speist diesen mit einem variablen Strom, erzeugt dies am Ausgang der Schaltung ebenfalls einen variablen Strom (Spiegelfunktion), der, trotz dieser Veränderbarkeit, in dem Sinne hochstabil ist, wenn die Betriebsspannung oder der Lastwiderstand am Ausgang sich in einem zulässigen Bereich ändert. Damit sind wir beim Thema STROMSPIEGEL, wobei der Stromspiegel, realisiert nur mit Transistoren nicht dazu gehört. Dieses Thema folgt später in einem Update. Dafür zeigt ein praktisches Beispiel wie eine variable Stromquelle mit LED und Transistor dem Zweck dient, eine Stromspiegelschaltung dynamisch zu testen, – sofern die Einfachheit für die Anwendung genügt.

Gruss Euer
ELKO-Thomas


UPDATE: Der 555-CMOS-Timer als Impulsbreitenmodulator (PWM)….

Der vollständige Titel lautet „Der 555-CMOS-Timer als Impulsbreitenmodulator (PWM) zur Steuerung eines kleinen DC-Ventilators“. Dieser vollständige Titel ist zu lang für die Titelzeile und er vermittelt nicht das eigentliche Ziel dieses Update.

Der Kern liegt in den elektronischen Details, die auch für andere Projekte nützlich sein können. Hier habe ich in Wort und Bild einiges verbessert und erweitert. Ursprünglich ging es um die PWM-Anwendung für einen kleinen DC-Tischventilator mit einer kleinen Leistung von 6 Watt. Mit entsprechenden Ergänzungen, kann man mit der selben Basisschaltung, PWM-Erzeugung mit einem LMC555 oder TLC555 (kein NE555) inklusive Anlaufbeschleunigung, leistungsstärkere DC-Motoren betreiben. Neu ist eine Version mit einem DC-Motor für 24 VDC und maximal 3 A, angedeutet hier im Titelbild mit Bild 1.

Damit die Belastung am Ausgang keine Rückwirkung haben kann auf die Elektronik, die das PWM-Signal erzeugt, eignet sich eine Treiberstufe. Dazu eignet sich durchaus einen zweiten LMC555 oder TLC555 oder aber eine diskrete Schaltung mit zwei Transistoren (BJT). In Bild 2 sieht man eine solche, zwischen Komparator und MOSFET-Schaltstufe.

Dieser Elektronik-Minikurs gehört zur Gruppe, die sich mit der CMOS-Version des 555-Timers (LMC555, TLC555) mit praktischen Anwendungen beschäftigt. Weil hier PWM ein zentrales Thema ist und es zu einem interessanten Vergleich kommt, ist neu die PWM-Methode mit Dreieckgenerator und Komparator mit Pegelshifting ein Thema mit ebenfalls einer praktischen Anwendung. Beide Schaltungs-Varianten haben ihren eigenen Vorteil. Worin dieser besteht wird im neusten Update erklärt. In Bild 2, mit dem Dreieck-Generator, fehlt die ANLAUF-Funktion. Sie ist, wenn überhaupt notwendig, ein Teil der Schaltung, welche die Steuerspannung /Ut liefert. Die seltsame Bezeichnung /Ut ist im Minikurs erklärt und hat seinen Sinn.

Eine Komparatorschaltung neigt oft zum kurzzeitigen Oszillieren (Burst) während der Schaltflanke am Ausgang. In diesem Zustand tritt eine sehr hohe Verstärkung in Erscheinung. Auslöser für solche Bursts sind oft parasitäre Kapazitäten und Induktivitäten, gegeben u.a. durch die Leiterbahnen. Auch diese Angelegenheit ist hier thematisiert und ebenso auch gleich der „mysteriöse“ Widerstand am Gate-Eingang eines Leistungs-MOSFET.

Gruss Euer
ELKO-Thomas

 


Tantal-Elko nicht geeignet zum Abblocken der DC-Betriebsspannung!

Es sind in der Zwischenzeit mehr als drei Jahrzehnte vergangen, seit man weiss, dass sich Tantal-Elkos nicht eignen zum Abblocken von Störspannungen in der DC-Betriebsspannung von elektronischen Schaltungen. Die parasitäre Induktivität von Tantal-Elkos ist zwar recht niedrig, aber das niederohmige Ein- und Ausschalten der DC-Spannung verträgt der Tantal-Elko nicht. Zerstörung des Tantal-Elko ist die Regel. Man kann dann Glück haben, dass nichts passiert, wenn die Nennspannung des Tantal-Elko deutlich höher ist, als die DC-Betriebsspannung. Wegen den geringen Verlusten eignen sich Tantal-Elkos für Oszillatoren, Taktgeber und Timerschaltungen, speziell für niedrige Frequenzen bzw. lange Zeiten, wenn an Präzision keine all zu grossen Ansprüche gestellt werden.

Nehmen wir als Beispiel das Titelbild mit der Schaltung eines retriggerbaren Monoflops. Es eignet sich dafür nur die CMOS-Version des 555-Timer-IC, z.B. den LMC555 oder den TLC555. Da genügt zum Abblocken an der DC-Betriebsspannung einen kleinen Keramik-Kondensator (Kerko) mit einer Kapazität von 100 nF. Kommt für eine andere Anwendung der bipolare Oldy NE555 zum Einsatz, ist der 100-nF-Kerko ebenso korrekt in der Nähe der Betriebsspannung-Pins, jedoch parallel dazu benötigt es einen Elko mit etwa 10 µF, um die Stromspitzen beim Umschalten der Endstufe sicher „aufzufangen“. Ein Tantal-Elko wäre da Fehl am Platz.

Bei sonstigen digitalen und analogen Schaltungen  genügen meist 100-nF-Kerkos. Abweichendes ist teilweise in den Applicationnotes von Datenblättern vermerkt. Elkos kommen oft auch zum Einsatz, häufig zusammenfassend mit grossen Schaltteilen am Eingang der DC-Betriebsspannung auf der Printplatte. Mehr zum Thema Tantal-Elko liest man im Link 1. Link 1 ist Teil von Link 2 und Link 3 ist der Elektronik-Minikurs von dem das Titelbild (aus Bild 8) ist.

 


UPDATE: Relaisbetrieb an 230 VAC, auch mit 48VDC-Relais

In diesem überarbeiteten Elektronik-Minikurs geht es darum, wie man mit einer Signalspannung mittels eines elektromagnetischen Relais am 230VAC- oder 115VAC-Netz irgend etwas schaltet, sei es z.B. eine Beleuchtung, ein Motor, ein Trafo oder eine Widerstandsheizung. Aber beginnen wir ganz von vorne. Es war einmal, als das Relais erfunden wurde. Dieser Erfinder hiess Joseph Henry und er erfand das Ur-Relais im Jahre 1835 in Albany im Staate New-York (USA), vor 184 Jahren. Etwas mehr zum Ur-Relais-Erfinder erfährt man neu in diesem Minikurs.

Meine persönliche Relaisgeschichte ist deutlich jünger. Sie begann vor 58 Jahren, als ich zum ersten Mal mit Kaltkathoden-Relais-Röhren in Kontakt kam und lernte was man damit so alles „anstellen“ kann. Bild 1 im Titelbild zeigt einen lichtempfindlichen Schalter mit einer Kaltkathoden-Relais-Röhre, einem Fotowiderstand FW am Ein- und ein Wechselspannungsrelais (AC-Relais) am Ausgang. Warum ein AC-Relais mit pulsierender DC-Spannung und was das schwarze Rechteck im Relaissymbol bedeutet, wird ebenfalls erklärt.

Bild 2 zeigt wie man ein 48VDC-Relais mit 230VAC betreiben kann, gesteuert mit einem Hochvolt-MOSFET. Der Strom durch den Widerstand Rx liegt im mA-Bereich. Cx verhindert ein Ankerflattern des Relais und Rx in Serie zu Cx dämpft die Stromspitze beim Einschalten der Schaltung an das 230VAC-Netz. Dies gilt für die Bilder 2, 4 und 6. Dort wo es kein Cx hat, ist eine Freilaufdiode Dx in Einsatz. So in den Bildern 3 und 5. Dx tut das selbe wie Cx, die Vermeidung des Ankerflattern. Das geht aber nur wenn das AC-Relais mit 230VAC betrieben wird. Für den 115 VAC-Betrieb ist die Wirkung von Dx zu schwach und deshalb ist in Bild 4 und 6 Cx im Einsatz.

In den Bildern 5 und 6 sind zwei bipolare Hochvolt-Transistoren als Kaskade im Einsatz. Die Kaskade funktioniert sehr gut, aber man muss ein paar Regeln beachten. Auch dies erfährt man in diesem Elektronik-Minikurs, der die Basis ist für weitere Minikurse mit dem Einsatz von Relais im Bereich von 230 VAC oder 115 VAC. Die Lowcurrent-LED (Strom < 5mA) in Serie zum Relais dient der ON-Anzeige.

Gruss Euer
ELKO-Thomas


UPDATE: Integrierte fixe und einstellbare 3-pin-Spannungsregler und zwei Akku-Ladeschaltungen mit LM317LZ und LM317

Bild B zeigt einen reduzierten Ausschnitt aus Bild 6 im Kapitel „LM317/LM337: Symmetrische Ausgangsspannung“. Es geht dabei auch um die leichte Spannungseinstellung mittels hochauflösendem CERMET-Trimmpot, 10- oder 20-gängig. Als eine Erweiterung wird gezeigt, wie man mit einem 2-poligen Kipp-Umschalter zwei Spannungen ±Ub wählen kann, z.B. ±12 VDC oder ±15 VDC. Andere Werte sind möglich, wenn die involvierten Bauteile neu berechnet werden. Dazu gibt es drei etwas unterschiedliche LM317-Online-Rechenprogramme, anwendbar auch für die negative Spannungen mit LM337.

Teilbild B1 zeigt eine Umschaltmethode, die nicht erlaubt ist. Beim Umschaltvorgang wird kurzzeitig die Feedbackschlaufe beim LM317 (auch beim LM337) unterbrochen. Dabei steigt kurzzeitig die Spannung an +Ub (auch an -Ub) auf die maximale DC-Spannung und diese entspricht der gleichgerichtet und geglätteten DC-Spannung am Lade-Elko CL. Wegen der Umladung von Cx dämpft es etwas diesen Effekt, wobei dies stark abhängig ist von der Umschaltzeit des Kippschalters und vom Widerstand-Potmeter-Netzwerk.

Die Methode von Teilbild B2 ist praktikabel, weil die höhere Ausgangsspannung fix definiert und nur die niedrigere Spannung zugeschaltet wird. Es werden dabei die beiden Widerstand-Potmeter-Netzwerke parallel geschaltet. Dies hat den Nachteil, dass man stets zuerst die höhere und danach die niedrigere Spannung ±Ub kalibrieren muss.

Die neue Schaltung A (Bild 14 hier reduziert) zeigt wie es auch anders geht, so dass die Kalibrierungen sich gegenseitig nicht beeinflussen können. Am Beispiel mit drei umschaltbaren Spannungen +Ub geht das mit einem Kippschalter mit Nullstellung in der Mitte (B). Das funktioniert mit einem CMOS-Quad-NAND-Gatter (CD4011B) und drei NPN-Transistoren. Natürlich muss hier das Verhältnis Basis/Kollektorstrom von 1:10, zwecks maximaler Sättigung, definiert sein. Die Sättigungsspannung zwischen Kollektor und Emitter liegt bei 50 mV. Die daraus resultierende Präzision reicht für einen Netzteil-Betrieb längst aus. Bild 14 zeigt eine Single-Supply-Schaltung. Mit einer passenden Erweiterung, kann der Leser diese Schaltung zu einer Dual-Supply-Anwendung für ± Ub umsetzen, falls dies benötigt wird.

Dazu noch den Hinweis, die Schaltung in Bild A kann man auch für nur zwei Ausgangsspannungen +Ub realisieren und dies besonders einfach. Mehr dazu im Elektronik-Minikurs. Oder man könnte z.B. auch maximal zehn unterschiedliche Spannungen +Ub wählen mit dem Dekaden-Zähler-IC CD4017B. Noch mehr, und es müsste wohl ein µP zum Einsatz kommen….

Allgemeines: Neben weiteren praxisorientierten Anwendungen, befasst sich dieser Elektronik-Minikurs, betreffs den fixen und variablen 3pin-Spannungsreglern, mit seinen wichtigsten Aspekten. Ein Aspekt ist die Sache mit dem unerwünschten Strom-Rückfluss vom Aus- zum Eingang. Es ist genau beschrieben, wie es zu diesem Effekt kommt. Das Kapitel „Warum ist der Rückstrom so schädlich?“ zeigt am Beispiel der IC-internen Schaltung des 78xx-Regler, was im Detail passiert.

Gruss Euer
ELKO-Thomas


UPDATE: Z-Diode-Erweiterungskurs und die Bandgap-Referenz

Dieser Elektronik-Minikurs wurde überarbeitet, wobei es auch zwei neue Beiträge gibt. Der bisherige Inhalt befasst sich mit Dioden zur Begrenzung von Wechselspannungen. Ein praktisches Beispiel ist die Spannungsbegrenzung eines Fahrrad-Dynamos mit zwei antiseriell geschalteten Leistungs-Z-Dioden, parallel geschaltet zum Dynamo. Damit die leistungsschwache Glühbirne des Rücklichtes nicht mehr durchbrennt, wenn die stärkere Glühbirne im Scheinwerfer durchbrennt, ist diesen Z-Dioden zu verdanken. Dass diese Schaltung nur noch selten zum Einsatz kommen wird und kann, ist klar, weil für moderne LED-Beleuchtung ist dies nicht brauchbar. Sinnvoll ist diese LED-Modernisierung jedoch nur, wenn keine Primärzellen (Wegwerfbatterien) zum Einsatz kommen.

Weitere Themen sind der differenzielle Widerstand und der Temperaturkoeffizient von Z-Dioden, dargestellt mit einem Diagramm. Hier lernt man was man beachten muss, will man einen vernünftigen Kompromiss zwischen diesen beiden Abhängigkeiten erreichen. Dann folgt ein Kapitel zum Thema „Präzisions-Z-Dioden“ und was genau bedeutet schaltungstechnisch der differenzielle Widerstand.

Danach folgt das grosse Kapitel zum Thema die Bandgap-Spannungsreferenz. Zentral im Fokus steht der sehr bekannte LM385 mit einstellbarer Spannung mit zwei Widerständen und die Festspannungs-Versionen LM385-1.2 und LM385-2.5. Der allseits gut bekannte Spannungsregler LM317(L) beinhaltet eine Bandgap-Referenz. Je nach Anspruch der Präzision und Stabilität eignet sich auch dieser Spannungsregler als Spannungsreferenz. Jedoch, gerade beim Batteriebetrieb kann es sich lohnen bei niedrigem Leistungsverbrauch, von z.B. CMOS-Schaltungen, den LM385 als Shuntregler einzusetzen. Praktisches Beispiel ist der Einsatz eines Hallsensors.

Das neue Kapitel befasst sich eingehend mit der Application-Note „Current-Source“ aus dem LM385-Datenblatt. Diese Schaltung habe ich mit einem Testboard aufgebaut und getestet. Diese Konstantstromquelle besteht einzig aus einem LM385 und zwei PNP-Transistoren. Präzision und Stabilität überzeugen für den Nachbau. Ebenfalls neu ist ein kurzer  Beitrag zum XFET, dessen Referenzspannung von so hoher Qualität ist, dass der XFET sich speziell für AD/DA-Wandlersystemen mit hoher Auflösung eignet. Weil dem so ist, kann man die hohe Präzision leicht zerstören, wenn man mit passivem Tiefpassfilter die Rauschspannung reduzieren will. Ein Artikel aus dem Fachmagazin POLYSCOPE zeigt, wie man tiefpassfiltert ohne diese Störung zu verursachen. Dieser Artikel ist als pdf-File gegeben zum gratis kopieren.

Gruss Euer
ELKO-Thomas


Amplitudenmodulation mit dem OTA LM13700

Dies ist der zweite Elektronik-Minikurs zum Thema Operational-Transconductance-Amplifier (OTA), eine Alternative zum Operationsverstärker (Opamp). Ein Allrounder unter den OTAs ist der LM13700. Wenn auch schon älter, so ist er trotz moderneren OTAs noch immer gut erhältlich. Für Anwendungen bis zum mittleren 100-kHz-Bereich kann man ihn, je nach Art der Anwendung, gut einsetzen.

Im ersten OTA-Elektronik-Minikurs ging es um eine Anwendung als Dynamiklimiter für analoge Audiosignale. In diesem Minikurs geht es um die Amplitudenmodulation in der Funktion als kleiner Mittelwellensender mit geringer Reichweite bis etwa 10 Meter, z.B. als Demonstration für den schulischen Einsatz. Die Schaltung dient aber ebenso um den OTA praxisorientiert kennen zu lernen. Es kann auch zu weiteren Experimenten anregen, was auch beabsichtigt ist. Ist man am OTA nicht und nur an der Amplitudenmodulation für den Sendezweck interessiert, gibt es auch andere Wege die nach Rom führen. Eine solche Möglichkeit wird vorgestellt. In diesem Minikurs gilt die Aufmerksamkeit dem OTA LM13700, in dessen Datenblatt es 30 unterschiedliche anregende Application-Notes gibt. Viel Spass!

Gruss Euer
ELKO-Thomas


UPDATE: Synchronisation mit dem 230-VAC-Sinus-Nulldurchgang

Nach vier Jahren wieder mal ein kleines Update zum vorliegenden Elektronik-Minikurs. Neues ist nicht dazu gekommen. Aber beim Text mit Bild wurde einiges ergänzt und verbessert. Z.B. ist deutlicher hervorgehoben, worauf es ankommt, dass die Flanke eines Steuerimpulses mit dem Nulldurchgang der Sinusspannung des 230VAC-Netzes synchron verläuft und dies möglichst ohne unerwünschte Phasenverschiebung und trotzdem möglichst befreit von Störspannungen, welche der 230VAC-Netzspannung überlagert sind. Es gibt auch so genannte Rundsteuersignale die der 230VAC-Netzspannung überlagert sind. Auch das ist ein Problem zu dem es Lösungen gibt. Zu den Rundsteuersignalen gibt es entsprechende Grundlagen via Web.

Betreffs Phasenstabilität zeigt sich, dass die Referenzierung mit der Sekundärspannung eines Trafos, die zur Speisung der Schaltung dient, oder man verwendet dazu einen kleinen Zusatztrafo, die Stabilität des Phasenzustandes ist unsicher. Am Besten funktioniert es mit einer Direktnutzung der Netzspannung und diese dient direkt auch zur Niedervoltspeisung der Schaltung. Das geht mit Vorwiderstand, Elko und Z-Diode, weil der Stromverbrauch im untersten mA-Bereich niedrig genug und deshalb die Verlustleistung minimal ist.

Ein weiteres Thema zeigt, was bei gewissen Operationsverstärkern passiert und welche Folgen es haben kann, wenn eingangsseitig der Common-Mode-Bereich überschritten wird. Das ist grundsätzlich auch dann möglich, wenn ein solcher Opamp als Komparator benutzt wird. Speziell in diesem Fall eignet sich vor Übersteuerung ganz leicht den Einsatz von antiparallel geschalteten Dioden am Eingang.

Weitere Themen sind der Latchup-Effekt, der Unterschied zwischen Phase und Inversion bei der Verwendung eines aktiven Tiefpassfilter mit präziser Phasenverschiebung von 180 Grad.

Gruss Euer
ELKO-Thomas