Neues im Elektronik-Kompendium

LTE und 5G in unlizensierten Frequenzbändern

Um im unlizensierten Frequenzbereich um 5 GHz LTE- und 5G-Mobilfunktechnik zu betreiben, gibt es verschiedene Verfahren. Alle Verfahren gehen auf UMA (Unlicensed Mobile Access) zurück, dass es schon für UMTS (3G) gab. Aktuell sind die Verfahren LAA und LTE-U, wobei LTE-LAA weltweit häufiger eingesetzt wird.

Außerdem gibt es noch WLAN-Interworking, LWA und MuLTEFire.

Kommentieren

 

Warum Mobilfunk und Rundfunk zusammen nicht funktionieren

Das Mobilfunknetz mit Rundfunk zum Empfang von Radio und TV zu vereinen gibt es bereits seit UMTS (3G). Auf dem ersten Blick scheinen Mobilfunk und Rundfunk auch gut zusammenzupassen. Schließlich kann man beides mit mobilen Geräten, wie Smartphones, empfangen.

Mit 5G gibt es für Mobile-TV eine Neuauflage. Sie nennt sich „5G Today“. Damit sollen großflächige TV-Übertragungen im Mobilfunknetz umgesetzt werden.

Doch wie man es dreht und wendet, für die Rundfunkübertragung wurden die Mobilfunknetze nicht konzipiert.
Und so kann man alle Versuche, Mobilfunk und Rundfunk zu vereinen, als gescheitert ansehen.
Die Gründe dafür liegen in der unterschiedlichen technischen Umsetzung, Einschränkungen bei den Endgeräten, dem untypischen Nutzerverhalten und fehlendes Kundeninteresse.

Technische Gründe


Bei der klassischen Mobilfunkverbindung hat jeder Teilnehmer eine individuelle Verbindung zur nächsten Basisstation. Man bezeichnet das als Unicast. Der Bandbreitenbedarf steigt mit der Anzahl der Geräte. Jedes Endgerät ist im Netz registriert.
Sollen mehrere Endgeräte mit demselben Inhalt versorgt werden, bezeichnet man das als Multicast. Auch hier muss jedes Endgerät im Netz individuell registriert sein. Die Teilnehmer sind in Multicast-Gruppen eingeteilt.
Beim typischen Rundfunk werden alle erreichbaren Endgeräte mit identischen Inhalten versorgt, die nur einmal an alle gesendet werden. Man bezeichnet das als Broadcast. Die Endgeräte sind im Netz nicht registriert und können anonym bleiben. Der Bandbreitenbedarf steigt mit der Anzahl der Broadcast-Angebote.

Spezielle Inhalte


Die Nutzung von Mobile-TV bringt einige Besonderheiten mit sich. Ein direkter Vergleich mit dem normalen Fernsehen ist nicht möglich.
Die Mobilfunkbetreiber und TV-Sender stellen immer wieder fest, dass es für kleine Displays speziell bearbeitetes Videomaterial braucht. Tendenziell muss es mehr detaillierte Ausschnitte geben. In den Sendungen müssen Nah- und Großaufnahmen dominieren. Der Video-Produzent muss sich also schon vorher Gedanken machen, wie das Material nachher genutzt und weiterverarbeitet wird.

Nutzer und Nutzerverhalten


Mobile-TV ist auch für den Nutzer schwierig und gewöhnungsbedürftig. Auch wenn es viele Vorteile geben mag. Fernsehen am Smartphone ist unkomfortabel. Und auch die Anbieter haben ein Problem. Neue Hauptsendezeiten entstehen, etwa zu Berufsverkehrszeiten in den Morgen- bzw. Abendstunden. Zu diesen Zeiten existieren jedoch keine Inhalte für die entsprechenden Zielgruppen.
Außerdem sind die bevorzugten Orte für den Fernseh-Konsum zuhause zur Entspannung. Mobile-TV ist etwas bei Warte- und Fahrtzeiten. Generell ist die Nutzung immer nur kurz, dafür mehrmals täglich oder mehrmals wöchentlich. Eben eine typische Gelegenheitsnutzung.

Zielgruppen


Neben Technik-Freaks und jungen Leuten gehören vielleicht noch Nachtwächter, Taxifahrer und Pförtner zur Zielgruppe. Die Anzahl der Nutzer ist demnach nicht besonders groß und auch nur begrenzt zahlungskräftig.

Fazit


Mobile-TV ist ein Nischenprodukt, das hohe Investitions- und Betriebskosten verursacht. Ein lukratives Geschäftsmodell sieht anders aus.
In der Vergangenheit wurden alle Mobile-TV-Projekte in Deutschland eingestellt oder kamen über die Planungsphase nicht hinaus.

 

Update: Mobile-TV / Handy-TV

Mobile-TV oder Handy-TV ist der Empfang von Fernseh- und Radio-Inhalten auf dem Smartphone oder einem vergleichbaren mobilen Gerät.

Doch wie man es dreht und wendet, für die Rundfunkübertragung wurden die Mobilfunknetze nicht konzipiert.
Und so kann man alle Versuche, Mobilfunk und Rundfunk zu vereinen, als gescheitert ansehen.
Die Gründe dafür liegen in der unterschiedlichen technischen Umsetzung, Einschränkungen bei den Endgeräten, dem untypischen Nutzerverhalten und fehlendes Kundeninteresse.

 

 

Update: ADSL

Bei ADSL handelt es sich um ein Übertragungsverfahren für einen Breitband-Internet-Anschluss über eine normale Telefonleitung. Der wichtigste Vorteil von ADSL war, dass die vorhandenen Telefonanschlüsse (Analog/ISDN) parallel weiterverwendet werden können.

Die ADSL-Breitband-Anschlüsse werden in Deutschland als DSL-Anschlüsse bezeichnet. Je nach Netzbetreiber oder Provider haben sich unterschiedliche Markennamen herausgebildet.

Im Laufe der Zeit wurde die ADSL-Technik immer wieder erweitert und verbessert, so dass die Reichweite oder die Übertragungsrate immer wieder gesteigert werden konnte.

 

IEEE 802.3ah - EFM - Ethernet in the First Mile

IEEE 802.3ah ist ein Standard für die „letzte Meile“ im Festnetz, bei der es sich um das letzte Teilstück der Leitung zum Teilnehmeranschluss.

 

Update: GPON

GPON ist ein Übertragungssystem auf Basis eines Glasfasernetzes zur Versorgung von DSLAMs für DSL-Anschlüsse oder direkt von Endkundennetzen per Glasfaser.

 

5G-Mobilfunk-Netzarchitektur (3GPP)

Der 5G-Mobilfunk ist die konsequente Weiterentwicklung von LTE. Da ist es ganz logisch, dass LTE in der 5G-Netzarchitektur berücksichtigt wird. Deshalb unterscheidet man zwischen 5G-Basisstationen in 4G-Netzen und eigenständigen 5G-Netzen.

 

5G-Mobilfunk-Übertragungstechnik (3GPP)

Anders als bei den vorherigen Mobilfunk-Generationen mit GSM, UMTS und LTE findet bei 5G keine grundlegende technische Umstellungen statt. Die bestehende LTE-Technik wird weiterentwickelt und optimiert. Beispielsweise auf höheren Datendurchsatz und geringere Latenz.

 

Warum eine Verfügbarkeit von 99% wenig aussagekräftig ist

Der Zustand des LTE-Ausbaus wird mit einer Verfügbarkeit von 99 % für das Netz der Deutschen Telekom angegeben. Da könnte man von einer nahezu lückenlosen Abdeckung ausgehen. In der Praxis sieht das anders aus. Wer viel unterwegs ist, dem werden die fehlenden 1% oft begegnen. Wie kann das sein?

Das hat mit einem unterschiedlichen Verständnis von Verfügbarkeit und Netzabdeckung zu tun.

Häufig wird die Netzabdeckung mit der geografischen Reichweite eines Funknetzes verwechselt.
Die Netzabdeckung gibt an, wie viel Prozent der Bevölkerung eines Landes das Mobilfunknetz nutzen können.
Die Fläche, die durch alle Basisstationen des Funknetzes versorgt wird, wird als Versorgungsbereich bezeichnet.

Das bedeutet, eine hohe Netzabdeckung oder Verfügbarkeit ist wenig aussagekräftig. Wichtig ist der Versorgungsbereich. Doch der wird nicht angegeben.

Mehr Informationen:

 

UPDATE: Relaisbetrieb an 230 VAC, auch mit 48VDC-Relais



In diesem überarbeiteten Elektronik-Minikurs geht es darum, wie man mit einer Signalspannung mittels eines elektromagnetischen Relais am 230VAC- oder 115VAC-Netz irgend etwas schaltet, sei es z.B. eine Beleuchtung, ein Motor, ein Trafo oder eine Widerstandsheizung. Aber beginnen wir ganz von vorne. Es war einmal, als das Relais erfunden wurde. Dieser Erfinder hiess Joseph Henry und er erfand das Ur-Relais im Jahre 1835 in Albany im Staate New-York (USA), vor 184 Jahren. Etwas mehr zum Ur-Relais-Erfinder erfährt man neu in diesem Minikurs.

Meine persönliche Relaisgeschichte ist deutlich jünger. Sie begann vor 58 Jahren, als ich zum ersten Mal mit Kaltkathoden-Relais-Röhren in Kontakt kam und lernte was man damit so alles "anstellen" kann. Bild 1 im Titelbild zeigt einen lichtempfindlichen Schalter mit einer Kaltkathoden-Relais-Röhre, einem Fotowiderstand FW am Ein- und ein Wechselspannungsrelais (AC-Relais) am Ausgang. Warum ein AC-Relais mit pulsierender DC-Spannung und was das schwarze Rechteck im Relaissymbol bedeutet, wird ebenfalls erklärt.

Bild 2 zeigt wie man ein 48VDC-Relais mit 230VAC betreiben kann, gesteuert mit einem Hochvolt-MOSFET. Der Strom durch den Widerstand Rx liegt im mA-Bereich. Cx verhindert ein Ankerflattern des Relais und Rx in Serie zu Cx dämpft die Stromspitze beim Einschalten der Schaltung an das 230VAC-Netz. Dies gilt für die Bilder 2, 4 und 6. Dort wo es kein Cx hat, ist eine Freilaufdiode Dx in Einsatz. So in den Bildern 3 und 5. Dx tut das selbe wie Cx, die Vermeidung des Ankerflattern. Das geht aber nur wenn das AC-Relais mit 230VAC betrieben wird. Für den 115 VAC-Betrieb ist die Wirkung von Dx zu schwach und deshalb ist in Bild 4 und 6 Cx im Einsatz.

In den Bildern 5 und 6 sind zwei bipolare Hochvolt-Transistoren als Kaskade im Einsatz. Die Kaskade funktioniert sehr gut, aber man muss ein paar Regeln beachten. Auch dies erfährt man in diesem Elektronik-Minikurs, der die Basis ist für weitere Minikurse mit dem Einsatz von Relais im Bereich von 230 VAC oder 115 VAC. Die Lowcurrent-LED (Strom < 5mA) in Serie zum Relais dient der ON-Anzeige.

Gruss Euer
ELKO-Thomas