Frequenz-Verdoppler mit EXOR-Gatter

Das Thema hier ergänzt und erweitert den Grundlagen- und Anwendungskurs zum Thema EXOR-Logik. Im April 2016 ging es darum, dass ein Motorradfahrer mit einer einzigen LED den linken und rechten Blinker überwachen wollte. Er bat mich um Unterstützung. Es folgte zunächst ein Lösungsvorschlag mit den integrierten CMOS-EXOR-Gattern CD4070B oder CD4030B. Dazu gehörig ein nicht geringer Aufwand betreffs Überspannungsschutz. Alternativ dazu realisierte ich eine diskrete EXOR-Schaltung mit vier bipolaren Transistoren (BJT) und geringerem Gesamtaufwand.

In diesem Elektronik-Minikurs geht es um die eigentlich gut bekannte Schaltung, wie man mit einem EXOR-Gatter einen einfachen digitalen Frequenzverdoppler realisiert. Für relativ hohe Frequenzen funktioniert das problemlos. Bei niedrigen Frequenzen zeigen sich dann unerwünschte Schwingungen, wenn die Flanke des verzögerten Eingangssignales nicht steil genug ist. Dann müsste man EXOR-Logik haben mit Schmitt-Trigger-Eigenschaften. Dies gibt es jedoch nicht. Aber es gibt die alternative EXOR-Lösung mit NAND-Gattern und davon gibt es solche mit Schmitt-Trigger-Eigenschaften. Siehe Titelbild oben links.

Will man mit wenig Aufwand untersuchen, wie es zur unerwünschten Oszillation kommt, wird dies genau erklärt. Die Schaltung dazu ist ganz einfach, angedeutet oben rechts im Titelbild. Will man eine EXOR-Frequenzverdopplung im höheren, für CMOS zulässigen, Frequenzbereich, geht dies auch ohne RC-Glied durch den Einsatz freier EXOR-Gatter. Mit einem Gatter erhält man eine Impulsdauer von etwas 50 ns, wenn zwei sind es 100 ns und mit drei 150 ns. Eine kleine Experimentierschaltung im Titelbild unten rechts zeigt es.

Gruss Euer
ELKO-Thomas


EXOR-Logik mit IC oder Transistoren (BJT) – Überwachung von Motorrad-Lampen

Auslöser dieses neuen Elektronik-Minikurses für die Rubrik „DIGITALE SCHALTUNGEN: GRUNDLAGEN, KLEINE ANWENDUNGEN“ war der Wunsch eines Motorradfahrers auf dem Anzeigeboard mit nur einer zusätzlichen LED zu erkennen, ob das Abblendlicht des Scheinwerfer oder/und die linke oder rechte Blinklampe aktiv ist. Das funktioniert recht einfach mit dem Einsatz einer Exklusive-Oder-Schaltung, auch EXOR oder einfach nur XOR genannt. Dies veranlasste mich zunächst die Eigenschaft des XOR-Gatter zu fokussieren und da fiel mir auf, dass es bei den intergrierten AND-, NAND-, OR- und NOR-Gatter solche ICs gibt mit mehreren Eingängen, jedoch nicht bei XOR- und XNOR-Gatter. Da gibt es nur Gatter mit zwei Eingängen. Der Grund ist der, dass ein XOR oder XNOR mit nur schon drei Eingängen nicht zu 100 % richtig arbeitet. In der Einleitung wird dies thematisiert.

Im nächsten Schritt befassen wir uns mit der gestellten Aufgabe und der XOR-Logik. Es wird kurz gezeigt, wie ein XOR-Gatter mit vier NAND-Gatter realisiert wird und wie ein XOR-Gatter auch als steuerbarer Inverter nützlich sein kann. In den folgenden Kapiteln werden zwei Schaltungsvarianten vorgestellt. Die eine Variante mit dem Einsatz eines CMOS-IC mit vier XOR-Gatter, von dem zwei verwendet werden. Die alternative Variante ist eine diskrete XOR-Schaltung mit vier Transistoren (BJT). Diese Schaltung ist vor allem für höhere Betriebsspannungen geeignet, wenn man nicht extra eine Spannungsstabilisierung einsetzen will.

Im Auto oder Motorrad gibt es signifikante Störungen die mit Überspannungen behaftet sind. Dazu untersuchen wir eine Test-Applicationnote von SGS-Thomson und verwenden diese als Referenz zur Realisierung einer Schutzumgebung für die beiden XOR-Schaltungen. Bei der CMOS-Variante ist natürlich der Latchup-Effekt ein Thema.

Ganz am Schluss folgt der Hinweis, dass es für den Selbstbau an Mopeds, Motorräder oder Autos gesetzliche Bestimmungen gibt, worüber man sich vorsichtshalber informieren sollte…

Gruss Euer
ELKO-Thomas