Rechnen mit Dualzahlen

  • Addition von Dualzahlen
  • Subtraktion von Dualzahlen

 

Addition von Dualzahlen

Bei der Addition von Dualzahlen gelten im Prinzip die gleichen Regeln, wie bei der Addition von Dezimalzahlen. Übersteigt die Addition an einem Stellenwert den höchstmöglichen Stellenwert, dann erfolgt ein Übertrag in der nächsten Stelle.

Rechenregeln für die Addition von dualen Zahlen

    0 + 0 = 0
    0 + 1 = 1
    1 + 0 = 1
    1 + 1 = 0 + 1 Übertrag
1 + 1 + 1 = 1 + 1 Übertrag

Beispiel

    1 1 0 1 1 1 1 0 0 = 444
+ 1 0 0 1 1 0 1 0 = 154 Ü 1 1 1 1 1 ---------------------
1 0 0 1 0 1 0 1 1 0 = 512 + 64 + 16 + 4 + 2 = 598

Problem: Überlauf des Wertebereichs

   1011 -> 11
+  1000 ->  8
--------
(1)0011 ->  3

Wenn man beispielsweise zwei 4-Bit-Zahlen addiert und dabei ein Übertrag entsteht, dann wird das sogenannte Carry-Bit gesetzt. Bevor ein Ergebnis ausgegeben wird, muss das Carry-Bit überprüft werden. Wenn nicht, dann wäre das Ergebnis falsch. Ist es gesetzt (1), dann ist das Ergebnis übergelaufen.
Es gibt verschiedene Möglichkeiten auf einen Überlauf zu reagieren. Der Überlauf wird zum Beispiel ignoriert und verworfen, das Programm wird unterbrochen oder der Datentyp wird von der Programmiersprache automatisch geändert.

Subraktion von Dualzahlen

Bei der Subtraktion von Dualzahlen gelten im Prinzip die gleichen Regeln, wie bei der Subtraktion von Dezimalzahlen.

Rechenregeln für die Subtraktion von dualen Zahlen

    0 - 0 = 0
    0 - 1 = 1 + 1 Entlehnung
    1 - 0 = 1
    1 - 1 = 0
0 - 1 - 1 = 0 + 1 Entlehnung
1 - 1 - 1 = 1 + 1 Entlehnung

Beispiel

    1 1 1 1 0 0 0 = 120
-   1 0 0 1 1 1 0 =  78
E       1 1 1
-----------------
    0 1 0 1 0 1 0 = 32 + 8 + 2 = 42

Die Subtraktion von Dualzahlen gilt als umständlich und ist in der Digitaltechnik mit logischen Verknüpfungen nicht möglich. Es existiert kein digitaler Schaltkreis, der subtrahieren kann. Erschwerend kommt hinzu, dass es im dualen Zahlensystem keine negativen Zahlen gibt.

Für die Subtraktion von Dualzahlen gibt es in der Digitaltechnik keine logische Verknüpfung. Deshalb behilft man sich mit der Komplementbildung, bei der eine Subtraktion in eine Addition umgewandelt wird, bei der das Ergebnis einer Subtraktion entspricht.

Weitere verwandte Themen:

Teilen:

Elektronik-Fibel

Elektronik-Fibel

Das will ich haben!