Folge uns

Folge uns auf Facebook Folge uns auf Twitter Folge uns auf Google Abonniere unseren RSS-Feed Abonniere unseren Newsletter

Das Buch zu dieser Webseite

Elektronik-Fibel

Die Elektronik-Fibel, das Elektronik-Buch

Käufer der Elektronik-Fibel Kundenmeinung:
Die Elektronik-Fibel ist einfach nur genial. Einfach und verständlich, nach so einem Buch habe ich schon lange gesucht. Es ist einfach alles drin was man so als Azubi braucht. Danke für dieses schöne Werk.

Elektronik-Fibel
jetzt bestellen!

 

Die Elektronik-Fibel ist im iBookstore erhältlich

Die Elektronik-Fibel für Amazon Kindle erhältlich

Elektronik-Fibel als eBook von Google Play Store

Elektronik-Fibel als PDF-Datei ohne DRM

Das Buch zu dieser Webseite

Operationsverstärker
und
Instrumentationsverstärker

Operationsverstärker und Instrumentationsverstärker

Käufer Elektronik-Workshop Kundenmeinung:
Mein Lob gilt der übersichtlichen und schönen Darstellung und der guten didaktischen Aufbereitung. Selten werden Schaltungen so gut erklärt, dass es auch noch Spaß macht sich damit zu beschäftigen.

Jetzt bestellen!

 

OPV-Buch als PDF-Datei ohne DRM

Elektronik Lernpakete

Lernpaket Einstieg in die Elektronik

Lernpaket Einstieg in die Elektronik

 

Lernpaket Elektronik

Lernpaket Elektronik

 

Lernpaket Elektronische Schaltungen selbst entwickeln und aufbauen

Lernpaket Elektronische Schaltungen selbst entwickeln und aufbauen

Passiver Tiefpass / Tiefpass-Filter

Ein passiver Tiefpass lässt, wie sein Name schon sagt, Spannungen/Amplituden mit tiefen Frequenzen durch. Hohe Frequenzen werden gesperrt. Der Zusatz "passiv" steht dabei für das fehlende verstärkende Element. Einen Tiefpass kann man auch als Filter einsetzen. Dann sagt man Tiefpass-Filter dazu. Die Wirkung des Tiefpasses bezieht sich auf sinusförmige Wechselspannungen.

Hinweise zu den Schaltungen und den dazugehörigen Erklärungen

Die hier dargestellten Schaltungen dienen nur der theoretischen Betrachtung. In der Praxis können sie nur bedingt eingesetzt werden. Es gelten ähnliche Bedingungen, wie bei einem Spannungsteiler mit Widerständen.
In der folgenden Betrachtungsweise ist immer wieder von einem Wechselstromwiderstand die Rede. Das rührt daher, weil ein Kondensator oder eine Spule immer auch als Widerstand zu verstehen sind. Allerdings ist der Widerstandswert von Kondensator und Spule frequenzabhängig und mit einer Kapazität (Kondensator) oder einer Induktivität (Spule) behaftet. In der folgenden Betrachtung kann man die Kapazität des Kondensators bzw. die Induktivität der Spule erst einmal vernachlässigen. Interessant ist das Frequenzverhalten von Kondensator und Spule.

Frequenzverhalten
Kondensator Spule
Diagramm Diagramm des induktiven Blindwiderstands
Das Diagramm zeigt den Verlauf des kapazitiven Blindwiderstands XC in Abhängigkeit der Frequenz f. Mit steigender Frequenz sinkt der Widerstandswert. Das Diagramm zeigt den Verlauf des induktiven Blindwiderstands XL in Abhängigkeit der Frequenz f. Mit steigender Frequenz steigt auch der Widerstandswert.

Um sich die Funktionsweise der Schaltungen besser merken zu können, muss man nur wissen, wie sich Kondensator und Spule bei hohen und tiefen Frequenzen verhalten. Also ob der Widerstandswert steigt oder fällt. Wichtig ist dann nur noch zu wissen, wie sich die Spannung an einer Reihenschaltung von zwei Widerständen verteilt.

Grenzfrequenz

Diagramm eines Tiefpasses
Das Diagramm zeigt den Verlauf der Ausgangsspannung Ua eines Tiefpasses in Abhängigkeit der Frequenz. Signale mit Frequenzen unterhalb der Grenzfrequenz fg gelten als durchgelassene Signale. Signale mit Frequenzen oberhalb der Grenzfrequenz fg gelten als gesperrte Signale.

RC-Glied

Tiefpass
Hinweis: In anderer Literatur kann Kondensator und Widerstand getauscht sein. Das CR-Glied wird dann als RC-Glied bezeichnet.

Formel
Bei einer sinusförmigen Eingangsspannung Ue mit tiefer Frequenz hat der Kondensator C einen großen Wechselstromwiderstand. Dadurch fällt an ihm eine größere Spannung ab, als am Widerstand R. Der Wechselstromwiderstand des Kondensators ist so groß, dass der Widerstand R fast keine Rolle mehr spielt. Er ist im Verhältnis zum Wechselstromwiderstand des Kondensators so klein, dass der Spannungsabfall am Kondensator fast so groß wie die Eingangsspannung Ue ist. Am Ausgang Ua liegt fast die volle Eingangsspannung Ue.

Formel
Bei einer sinusförmigen Eingangsspannung Ue mit hoher Frequenz hat der Kondensator C einen sehr kleinen Wechselstromwiderstand. Dadurch fällt an ihm eine kleinere Spannung ab, als am Widerstand R. Der Widerstandswert ist im Verhältnis zum Wechselstromwiderstand des Kondensators so groß, dass der Spannungsabfall über den Kondensator und somit die Ausgangsspannung Ua fast 0 V beträgt.

Formel zur Berechnung der Grenzfrequenz des RC-Glieds
Die Grenzfrequenz fg des CR-Glieds wird durch den Widerstand R und den Kondensator C bestimmt.

LR-Glied

Tiefpass

Formel
Bei einer sinusförmigen Eingangsspannung Ue mit tiefer Frequenz ist der Wechselstromwiderstand der Spule L sehr klein. An ihr fällt viel weniger Spannung ab, als am Widerstand R. Der Wechselstromwiderstand der Spule ist so klein, dass er fast keine Rolle spielt. Er ist im Verhältnis zum Widerstand R so klein, dass fast die gesamte Eingangsspannung Ue am Widerstand R als Ausgangsspannung Ua abfällt.

Formel
Bei einer sinusförmigen Eingangsspannung Ue mit hoher Frequenz hat die Spule L einen großen Wechselstromwiderstand. Dadurch fällt an ihr eine größere Spannung ab, als am Widerstand R. Der Wechselstromwiderstand der Spule ist so groß, dass der Widerstand R fast keine Rolle mehr spielt. Er ist im Verhältnis zum Wechselstromwiderstand der Spule so klein, dass der Spannungsabfall über den Widerstand R und die Ausgangsspannung Ua fast 0 V beträgt.

Formel zur Berechnung der Grenzfrequenz des LR-Glieds
Die Grenzfrequenz fg des RL-Glieds wird durch den Spule L und die Widerstand R bestimmt.

Weitere verwandte Themen: