LM158/LM258/LM358/LM2904
Low Power Dual Operational Amplifiers

General Description
The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard ±5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

Unique Characteristics
- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages
- Two internally compensated op amps in a single package
- Eliminates need for dual supplies
- Allows directly sensing near GND and VOUT also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual operational amplifier

Features
- Internally frequency compensated for unity gain
- Large dc voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:
 - Single supply 3V to 32V
 - Dual supplies ±1.5V to ±16V
- Very low supply current drain (500 μA)—essentially independent of supply voltage
- Low input offset voltage 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to V+ – 1.5V

Connection Diagrams (Top Views)

See NS Package Number H08C

See NS Package Number J08A
Order Number LM358M, LM358AM or LM2904M
See NS Package Number M08A
Order Number LM358AN, LM358N or LM2904N
See NS Package Number N08E

*LM158 is available per SMD #5962-8771001
LM158A is available per SMD #5962-8771002
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 9)

<table>
<thead>
<tr>
<th></th>
<th>LM158/LM258/LM358</th>
<th>LM2904</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V⁺</td>
<td>32V</td>
<td>26V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>32V</td>
<td>26V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to +32V</td>
<td>−0.3V to +26V</td>
</tr>
<tr>
<td>Power Dissipation (Note 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molded DIP</td>
<td>830 mW</td>
<td>830 mW</td>
</tr>
<tr>
<td>Metal Can</td>
<td>550 mW</td>
<td>530 mW</td>
</tr>
<tr>
<td>Small Outline Package (M)</td>
<td>530 mW</td>
<td>530 mW</td>
</tr>
<tr>
<td>Output Short-Circuit to GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(One Amplifier) (Note 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V⁺ ≤ 15V and T_A = 25°C</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Input Current (V_IN < −0.3V)</td>
<td>50 mA</td>
<td>50 mA</td>
</tr>
</tbody>
</table>

Operating Temperature Range

	LM358	LM258
	0°C to +70°C	−25°C to +85°C
	−40°C to +85°C	−55°C to +125°C

Storage Temperature Range

| | −65°C to +150°C | −65°C to +150°C |

Lead Temperature (Soldering, 10 seconds)

| | 260°C | 260°C |
| | 300°C | 300°C |

Soldering Information

- Dual-In-Line Package: Soldering (10 seconds) 260°C 260°C
- Small Outline Package: Vapor Phase (60 seconds) 215°C 215°C
- Infrared (15 seconds) 220°C 220°C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD Tolerance (Note 10)

| | 250V | 250V |

Electrical Characteristics

V⁺ = +5.0V, unless otherwise stated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 5), T_A = −25°C</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_N(+), or I_N(−), T_A = −25°C, V_CM = 0V, (Note 6)</td>
<td>20</td>
<td>50</td>
<td>45</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_N(+) – I_N(−), V_CM = 0V, T_A = −25°C</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>V⁺ = −30V, (Note 7) LM2904, V⁺ = −26V, T_A = −25°C</td>
<td>0</td>
<td>V⁺ − 1.5</td>
<td>0</td>
<td>V⁺ − 1.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range R_L = ∞ on All Op Amps V⁺ = 30V (LM2904 V⁺ = −26V)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>V⁺ = 5V</td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Units: mV, nA, V, mA
Electrical Characteristics (Continued) $V^+ = +5.0V$, Note 4, unless otherwise stated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V^+ = 15V, TA = 25^\circ C, R_L \geq 2 k\Omega$, (For $V_O = 1V$ to 11V)</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100 V/mV</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>$TA = 25^\circ C, V_{CM} = 0V$ to $V^+ - 1.5V$</td>
<td>70</td>
<td>85</td>
<td>65</td>
<td>85</td>
<td>70</td>
<td>85 dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>$V^+ = 5V$ to $30V$ ($LM2904$, $V^+ = 5V$ to $28V$, $TA = 25^\circ C$)</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100 dB</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling</td>
<td>$f = 1$ kHz to 20 kHz, $TA = 25^\circ C$ (Input Referred), (Note 8)</td>
<td>–120</td>
<td>–120</td>
<td>–120</td>
<td>–120</td>
<td>–120</td>
<td>–120 dB</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>$V_{IN}^+ = 1V, V_{IN}^- = 0V, V^+ = 15V, V_O = 2V, TA = 25^\circ C$</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40 mA</td>
</tr>
<tr>
<td>Sink</td>
<td>$V_{IN}^- = 1V, V_{IN}^+ = 0V, V^+ = 15V, TA = 25^\circ C, V_O = 2V$</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td>$V_{IN}^- = 1V, V_{IN}^+ = 0V, TA = 25^\circ C, V_O = 200 mV, V^+ = 15V$</td>
<td>12</td>
<td>50</td>
<td>12</td>
<td>50</td>
<td>12</td>
<td>50 (\mu)A</td>
</tr>
<tr>
<td>Short Circuit to Ground</td>
<td>$TA = 25^\circ C$, (Note 2), $V^+ = 15V$</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60 mA</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>$V^+ = 15V$</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>$R_S = 0\Omega$</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>20</td>
<td>7</td>
<td>(\mu)V/(^\circ)C</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>$I_{IN^+} - I_{IN^-}$</td>
<td>30</td>
<td>75</td>
<td>100</td>
<td>150</td>
<td>45</td>
<td>200 nA</td>
</tr>
<tr>
<td>Input Offset Current Drift</td>
<td>$R_S = 0\Omega$</td>
<td>10</td>
<td>200</td>
<td>10</td>
<td>300</td>
<td>10</td>
<td>10 pA/(^\circ)C</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN^+} or I_{IN^-}</td>
<td>40</td>
<td>100</td>
<td>40</td>
<td>200</td>
<td>40</td>
<td>500 nA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN^+} or I_{IN^-}</td>
<td>40</td>
<td>100</td>
<td>40</td>
<td>300</td>
<td>40</td>
<td>500 nA</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Continued) $V^+ = +5.0V$, Note 4, unless otherwise stated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>$V^+ = 30V$, (Note 7) (LM2904, $V^+ = 26V$)</td>
<td>0</td>
<td>$V^+ - 2$</td>
<td>0</td>
<td>$V^+ - 2$</td>
<td>0</td>
<td>$V^+ - 2$</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>$V^+ = +15V$ ($V_O = 1V$ to $11V$)</td>
<td>25</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>$V^+ = +30V$ ($LM2904, V^+ = 26V$)</td>
<td>$R_L = 2k\Omega$</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>$R_L = 10k\Omega$</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>V_{OL}</td>
<td>5V</td>
<td>20</td>
<td>5V</td>
<td>20</td>
<td>5V</td>
<td>20</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>$V_{IN^+} = +1V, V_{IN^-} = 0V$, $V^+ = +15V, V_O = 2V$</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>$V_{IN^-} = +1V, V_{IN^+} = 0V$, $V^+ = +15V, V_O = 2V$</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Note 1: For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a $+125^\circ C$ maximum junction temperature and a thermal resistance of $120^\circ C/W$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM2904/LM298A and LM158/LM158A can be derated based on a $+150^\circ C$ maximum junction temperature. The dissipation is the total of both amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 2: Short circuits from the output to the input can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately $40mA$ independent of the magnitude of the input common-mode voltage. At values of supply voltage in excess of $+15V$, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the $-V^+$ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3V$ at $25^\circ C$.

Note 4: These specifications are limited to $-55^\circ C \leq T_{A} \leq +125^\circ C$ for the LM158/LM158A. With the LM2904/LM298A, all temperature specifications are limited to $-25^\circ C \leq T_{A} \leq +85^\circ C$, the LM358/LM358A temperature specifications are limited to $0^\circ C \leq T_{A} \leq +70^\circ C$, and the LM2904 specifications are limited to $-40^\circ C \leq T_{A} \leq +85^\circ C$.

Note 5: $V_O = 1.4V$, $R_L = 0$ with V^+ from 5V to 30V, and over the full input common-mode range (0V to $-1.5V$) at 25°C. For LM2904, V^+ from 5V to 26V.

Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than $0.3V$ at $25^\circ C$. The upper end of the common-mode voltage range is $V^+ = 1.5V$ at $25^\circ C$, but either or both inputs can go to $+32V$ without damage ($+26V$ for LM2904), independent of the magnitude of V^+.

Note 8: Due to proximity of external components, ensure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.

Note 10: Human body model, $1.5k\Omega$ in series with $100pF$.
Typical Performance Characteristics

Input Voltage Range

Input Current

Supply Current

Voltage Gain

Open Loop Frequency Response

Common-Mode Rejection Ratio

Voltage Follower Pulse Response

Voltage Follower Pulse Response (Small Signal)

Large Signal Frequency Response

Output Characteristics

Current Sourcing

Output Characteristics

Current Sinking

Current Limiting
Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC}. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC}.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V_a without damaging the device. Protection should be provided to prevent the input voltages from going negative more than –0.3 V_{DC} (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of 3 V_{DC} to 30 V_{DC}. Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V⁺/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.
Typical Single-Supply Applications ($V^+ = 5.0 \, V_{\text{DC}}$)

Non-Inverting DC Gain ($0V$ Input $\rightarrow 0V$ Output)

$\frac{V_0}{V_{\text{IN}}} = 1 + \frac{R_2}{R_1}$

R not needed due to temperature independent I_{IN}

DC Summing Amplifier

$(V_{\text{IN}} \leq 0 \, V_{\text{DC}} \text{ and } V_{\text{O}} \geq 0 \, V_{\text{DC}})$

Where $V_{\text{O}} = V_1 + V_2 + V_3 + V_4$

$(V_1 + V_2) \geq (V_3 + V_4)$ to keep $V_{\text{O}} > 0 \, V_{\text{DC}}$

Power Amplifier

$V_{\text{O}} = 0 \, V_{\text{DC}}$ for $V_{\text{IN}} = 0 \, V_{\text{DC}}$

$A_v = 10$

”BI-QUAD” RC Active Bandpass Filter

$f_0 = 1 \, \text{kHz}$

$Q = 50$

$A_v = 100 \, (40 \, \text{dB})$
Typical Single-Supply Applications \((V^+ = 5.0\ V_{DC})\) (Continued)

Fixed Current Sources
\[
I_2 = \left(\frac{R_1}{R_2}\right)I_1
\]

Lamp Driver
\[
30\ mA \quad 100\ \Omega
\]

Current Monitor
\[
V_O = \frac{V(L)}{1A}
\]

(Increase \(R_1\) for \(I_L\) small) \(V_L < V^+ - 2\ V\)

LED Driver
\[
20\ mA
\]

Driving TTL
\[
\frac{1}{2}\ \text{LM358}
\]

Voltage Follower
\[
V_O = V_I
\]

Pulse Generator
\[
\begin{align*}
R1 & = 10k \\
R2 & = 10\kappa \\
R3 & = 150\kappa \\
R4 & = 150\kappa \\
R5 & = 180\kappa \\
R6 & = 180\kappa \\
C & = 0.001\mu F
\end{align*}
\]
Typical Single-Supply Applications \((V^+ - 5.0 \text{ V}_{\text{DC}})\) (Continued)

Squarewave Oscillator

Pulse Generator

Low Drift Peak Detector

High Compliance Current Sink

Comparator with Hysteresis
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

Voltage Controlled Oscillator (VCO)

![Voltage Controlled Oscillator Diagram]

WIDE CONTROL VOLTAGE RANGE: \(0 \, V_{DC} \leq V_C \leq 2 \, (V^+ - 1.5 \, V_{DC})\)

AC Coupled Inverting Amplifier

![AC Coupled Inverting Amplifier Diagram]

\[A_v = \frac{R_2}{R_1} \quad \text{(As shown, } A_v = 10)\]

Ground Referencing a Differential Input Signal

![Ground Referencing Diagram]

\[V_O = V_R\]

TL/H/7787–23

TL/H/7787–24

TL/H/7787–25
Typical Single-Supply Applications ($V^+ = 5.0 \, V_{DC}$) (Continued)

AC Coupled Non-Inverting Amplifier

$$A_v = 1 + \frac{R_2}{R_1}$$
$$A_v = 11 \, (As \, Shown)$$

DC Coupled Low-Pass RC Active Filter

$$f_0 = 1 \, kHz$$
$$Q = 1$$
$$A_v = 2$$

Bandpass Active Filter

$$f_0 = 1 \, kHz$$
$$Q = 25$$
Typical Single-Supply Applications (V⁺ = 5.0 VDC) (Continued)

High Input Z, DC Differential Amplifier

\[V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1) \]

As Shown: \(V_O = 2 (V_2 - V_1) \)

Photo Voltic-Cell Amplifier

\[\frac{V_{o+}}{V_{o-}} = 1 + \frac{R_6}{R_5} \]

Bridge Current Amplifier

\[V_O = V_{REF} \left(\frac{R_1}{2R} + \frac{R_2}{2} \right) \]

High Input Z Adjustable-Gain DC Instrumentation Amplifier

\[V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1) \]

As shown \(V_O = 101 (V_2 - V_1) \)
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Schematic Diagram (Each Amplifier)
Physical Dimensions inches (millimeters)

Metal Can Package (H)
NS Package Number H08C
Physical Dimensions inches (millimeters) (Continued)

Molded Dip Package (N)
Order Number LM358AN, LM358N or LM2904N
NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.
National Semiconductor was acquired by Texas Instruments.

This file is the datasheet for the following electronic components: