UPDATE: Vom Overload-Stromsensor zur elektronischen Sicherung – Theorie und Praxis

Dieser Elektronik-Minikurs besteht aus zwei Teilen, bzw. aus zwei Links. Der erste Teil befasst sich damit, dass man keine kostspieligen Rail-to-Rail-Opamps benötigt, wenn man auf der Leitung der positiven Betriebsspannung den Strom detektieren möchte mittels eines Opamp in der Funktion als Komparator. Ein echter Komparator käme auch in Frage, ist aber nicht nötig. Warum dies möglich ist, liest man ausführlich im Theorie-Teil. Ebenso wird angedeutet, dass dies auch für eine negative Betriebsspannung gilt. Der Unterschied der verwendbaren Lowcost-Opamps liegt in deren Eingangsbeschaltung. Soviel zur kurzen Einleitung…

Die letzten Updates der beiden Teile Theorie und Praxis vom Januar und Februar 2018 wurden nochmal überarbeitet und mit ein paar zusätzlichen Links erweitert, um das Lesen zu erleichtern. Man beachte das Titelbild. Neu ist eine weitere Möglichkeit für den Stromsensor mit einer stabilen einstellbaren Referenzspannung. Als Basis, an Stelle einer Konstantstromquelle in Teilbild 2, dient in Teilbild 3 eine Bandgap-Spannungsreferenz BG.

Teilbild 4 zeigt in Kürze die „Elektronische Sicherung“ mit Relais oder Power-MOSFET. Was sich wozu besser eignet, liest man und ebenso was der ominöse neu eingefügte Widerstand mit dem ?-Zeichen bedeutet. Was soll ein Widerstand zum Eingang eines CMOS-Gatter, der eh schon extrem hochohmig ist? So hochohmig ist er aber nur, wenn alles „rund“ läuft. Wenn nicht, dann kann es dem NAND-Gatter IC:B1, bzw. dem ganzen IC ziemlich schlecht gehen ohne diesen ?-Widerstand.

Freiwillige Hausaufgabe: Erst selbst herausfinden, wozu es diesen ?-Widerstand (R15) benötigt, bevor man es liest im Praxisteil (Teil II). Vielen Spass. Kleiner Hinweis, man muss gewisse Kriterien von integrierten CMOS-Schaltungen kennen…

Gruss Euer
ELKO-Thomas

Vom Overload-Stromsensor zur elektronischen Sicherung – Theorie

Vom Overload-Stromsensor zur elektronischen Sicherung – Praxis


UPDATE: Vom Overload-Stromsensor zur elektronischen Sicherung, Teil I und II

Dieser Elektronik-Minikurs besteht aus zwei Teilen, bzw. aus zwei Links. Der erste Teil befasst sich damit, dass man keine kostspieligen Rail-to-Rail-Opamps benötigt, wenn man auf der Leitung der positiven Betriebsspannung den Strom detektieren möchte mittels eines Opamp in der Funktion als Komparator. Ein echter Komparator käme auch in Frage, ist aber nicht nötig. Warum dies möglich ist, liest man ausführlich im Theorie-Teil. Ebenso wird angedeutet, dass dies auch für eine negative Betriebsspannung gilt. Der Unterschied der verwendbaren Lowcost-Opamps liegt in deren Eingangsbeschaltung. Man beachte das Titelbild vor dem Weiterlesen…

Bild 1: Wenn der Strom von +Ue via Rs nach +Ua so klein ist, dass die Spannung über Rs niedriger ist als die Flussspannung der Schottky-Diode SD, erzeugt Opamp A an Uc eine Spannung von beinahe 0V (GND). Der umgekehrte Fall tritt ein, wenn der Strom soweit ansteigt, dass die Spannung über Rs die Flussspannung von SD überschreitet. Da schaltet Uc auf beinahe +Ue. Diese Logik-Steuerspannung Uc (c = control) eignet sich grundsätzlich für beliebige Anwendungen. Hier geht es um eine elektronische Sicherung.

Bild 2: Nachteilig in Bild 1 ist, dass die Spannungsreferenz nicht deutlich niedriger ist als die Flussspannung von SD (~0.2V), weil bei der Detektion eines hohen Stromwertes setzt es für Rs einen Leistungswiderstand voraus. Dazu kommt, dass  die Spannung +Ua deutlich stromabhängig ist und der Maximalstrom ist nicht einstellbar. Abhilfe schafft die einfache Konstantstromquelle aus R1, R2, T und LED. Die Temperaturdrifts von T und LED kompensieren sich ausreichend genug für diese Anwendung, jedoch nicht für eine präzise Strommessung. Mit dem Trimmpot P kann man die Schaltschwelle (maximaler Strom) calibrieren. Mit dieser Methode kann man leicht im 10-mV-Bereich verlustarm arbeiten. NEU: Es wird abschliessend in Teil 2 noch eine alternative Lösung mittels Bandgap-Referenzspannung vorgestellt.

Bild 3: Hier kommt die Stromsensor-Schaltung von Bild 2 mit dem Unterschied zum Einsatz, dass die Eingänge von Opamp A vertauscht sind. Uc ist beinahe +Ub im Betriebszustand und wird beinahe 0V (GND) zum Auslösen der Sicherungsfunktion. Das Relais unterbricht den Stromkreis. Nach der Beseitigung von Überlast oder Kurzschluss an +Ua, setzt man mit der Taste EIN die Schaltung wieder in Betrieb und das Relais schaltet ein. Anstelle eines Relais ist NEU! auch ein Power-MOSFET eine Option. Dazu und alles Andere (z.B. dimensionierbare Trägheit), detailliert beschrieben, in den folgenden beiden Links. Man beginnt mit den theoretischen Grundlagen in Teil 1 und man fährt fort mit der praktischen Anwendung in Teil2.

Gruss Euer
ELKO-Thomas