Raspberry Pi: Energieversorgung

Die Stromversorgung des Raspberry Pi ist eine der unterschätzten Fehlerquellen. Mini-Computer, wie der Raspberry Pi, bedürfen einer stabilen Spannungs- UND Stromversorgung. Bei einem schlechten Netzteil und ungünstigen Betriebsbedingungen treten merkwürdige Effekte in Kombination mit einem instabilen Systemverhalten auf.


Schalten und Steuern mit Transistoren II: Der Sättigungs- und der Miller-Effekt!

Das ursprüngliche Thema dieses Elektronik-Minikurses war und ist das praxisbezogene Erlernen einer einfachen Transistorschaltung mit bipolaren Transistoren (BJT) zum schnellen Schalten von Spannungen mit kleinen Strömen. Man kann universelle Transistoren einsetzen, die hauptsächlich für niederfrequente analoge Anwendungen (Verstärker, Filter) gedacht sind, sofern die niedrige Schaltgeschwindigkeit genügt. Was bei diesen NF-Transistoren täuscht, ist die oft hohe Transitfrequenz von mehr als 100 MHz. Man denkt da leicht, das sind ja nur 10 ns und damit lässt sich leicht auch ein schnelles Ein- und Ausschalten von Spannungen realisieren. Aber ganz so einfach ist das nicht. Da muss man schon Transistoren suchen, welche Wertangaben in den Einschalt-(Turn-On-Time), Speicher- (Storage-Time) und Ausschaltzeiten (Turn-Off-Time) enthalten und diese Werte müssen, wenn notwendig, im 10ns-Bereich oder sogar darunter liegen.

In einem späteren Update wurde das Thema zum Schalten mit Transistoren mit MOSFETs erweitert. Speziell dann wenn man mit hohem Eingangswiderstand schalten will, gibt es das Problem mit dem Miller-Effekt. Diesen gibt es natürlich ebenso beim BJT und auch bei den Vakuum-Röhren von anno dazumal. Jedes verstärkende Element hat dieses Problem. Ein weiterer Geschwindigkeitsdämpfer ist der Sättigungs-Effekt beim BJT. Wie man damit umgeht, liest man in diesem Minikurs und ist hier im Titelbild mit Bild A2 angedeutet. Kombiniert man die beiden Schaltungen A1 und A2 zu einer Schaltung A3, löst man beide Probleme zugleich. Man reduziert den Miller-Effekt und den Sättigungs-Effekt. Wozu der unkonventionelle Widerstand R? dient, liest man ebenfalls in diesem Minikurs.

AKTUELLES UPDATE: Hier wird eine Methode vorgestellt, wie man beim Runterschalten von Ue auf GND, mit Hilfe eines zusätzlichen PNP-Transistors (BJT), Ladungsträger aus der Basis des schaltenden NPN-Transistors ausräumen kann. Bild B2 unterscheidet sich von Bild B1, dass zusätzlich der Millerkiller-Kondensator zum Einsatz kommt, um den Miller-Effekt zu reduzieren. Dies betrifft signifikant den Einschaltvorgang des Schalt-NPN-Transistor  und zwar so sehr, dass z.B. eine Flankenzeit von 1 µs auf 50 ns reduziert wird mit einer Kapazität von nur 1 nF. Es gibt dazu ein praktisches Experiment.

Gruss und viel Spass
Euer ELKO-Thomas


Maßeinheiten in der IT

Zur einfacheren Verarbeitung und Übertragung von Daten in und zwischen digitalen Systemen, weisen die Daten bestimmte Strukturen auf. Dabei handelt es sich um einzelne Zustände in Form von „0“ oder „1“ oder eben Gruppen von solchen Zuständen. Einzelne Zustände werden als Bit bezeichnet. Eine Gruppe von Zuständen wäre eine Bitfolge, die man zum Beispiel Byte oder Datenwort nennt.


TRANSIENT-PULSE-CONVERTER

Ein TRANSIENT-PULSE-CONVERTER? Was kann das wohl sein? Es ist eine Schaltung, die mit Hilfe eines Rechteck-Signalgenerators dazu dient, mit Impulsen digitale Schaltungen zu testen. Aber beginnen wir damit, was eine Transiente ist. Es gibt unterschiedliche Erklärungen. Die häufigste Vorstellung ist die der steilen Flanke von einem Impuls, jedoch keinesfalls die langsame Auf- oder Entladung eines Kondensators. Aber wieso eigentlich nicht, weil transient hat einfach nur etwas mit Durchschreiten zu tun. Eine Spannung, beginnend von einem fixen Spannungswert (z.B. GND) zu einem andern (z.B. +5V) oder in umgekehrter Richtung, ist eine transiente Spannung. Die lateinische Sprache leitet den Begriff Transiente von transire ab, und dies bedeutet so viel wie durchqueren oder durchziehen. Dies trifft auch auf Bild 1 zu. Mit einer Zeitkonstante von 1s wird der Kondensator auf- und entladen. Die ansteigende und die fallende Flanke an Ua sind Transienten. Ebenso natürlich die steilen Flanken der Rechteckspannung an Ue. Der TRANSIENT-PULSE-CONVERTER ist prinzipiell nichts anderes, als aus einer ansteigenden oder fallenden Spannungsflanke (Transiente) einen Impuls zu erzeugen und dazu benötigt man z.B. ein Monoflop, wie dies Bild 2 zeigt. Der Impuls selbst besteht natürlich aus zwei Spannungsflanken (Transienten).

Bild 3 zeigt zwei Arten von Monoflops. Zum leichteren Verständnis sind diese beiden Monoflops quasidikret mit HCMOS-Gatter und HCMOS-Inverter realisiert und im Minikurs entsprechend erklärt. Es hat damit zu tun, dass die eine Schaltung als Monoflop und die andere als One-Shot bezeichnet wird, obwohl beide (fast) das selbe tun. Im übertragenen Sinne geben sie auf einen Knopfdruck (Trigger, Auslöser) einen Schuss (Impuls) ab. Trotzdem besteht zwischen den beiden Schaltungen ein funktioneller Unterschied, der je nach Anwendung eine wichtige Bedeutung haben kann.

Die Schaltung des TRANSIENT-PULSE-CONVERTER, mit einigen Zusatzfunktionen, ist das Produkt aus der Zeit, als die TTL-Logik von grosser Bedeutung war. Diese Schaltung ist beschrieben und nachbaubar. Die LS-TTL-ICs sind noch alle erhältlich, evaluiert in drei Elektronik-Distributoren. Bild 3 zeigt den One-Shot mit HCMOS-ICs. Der One-Shot in HCMOS eignet sich für den Ersatz des TTL-Monoflop 74LS221 mit dem Vorteil, dass die minimal einstellbare Impulszeit 20 ns statt 40 ns beträgt. Es liegt beim interessierten Leser anstelle einfach nur nachzubauen, selbst die ganze Schaltung in HCMOS zu modernisieren.

Bild 4 zeigt wie einfach eine Logik-Pegel-Wandlung sein kann vom ausgangsseitigen TTL- oder HCMOS-Logikpegel zur noch moderneren LVCMOS-Logik (+Ub = 3.3 VDC). Beim TTL-Ausgang geht’s sogar mit nur einem Widerstand (Teilbild 4.1). Diese innere TTL-Schaltung eines Inverters (7404) bietet dem modernen Azubi und Studenten einen kurzen Einblick in einen Teil des digitalen Elektronik-Alltag der 1970er-Jahre. Ab 1980 begann das Zeitalter des CMOS.

Viel Spass und Gruss vom
ELKO-Thomas


IoT-Funksysteme

Aktuell konkurrieren mehrere Funksysteme, die die Anforderungen an ein IoT-Funksystem erfüllen, um die Gunst der Anwender. Auf der einen Seite die Weiterentwicklung vorhandener Mobilfunksysteme und auf der anderen Seite propritäre Lösungen, die einen neuen Standard schaffen wollen, der die spezifischen IoT-Anforderungen erfüllt.